Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis.
نویسندگان
چکیده
Plants are necessarily highly competitive and have finely tuned mechanisms to adjust growth and development in accordance with opportunities and limitations in their environment. Sugars from photosynthesis form an integral part of this growth control process, acting as both an energy source and as signaling molecules in areas targeted for growth. The plant hormone auxin similarly functions as a signaling molecule and a driver of growth and developmental processes. Here, we show that not only do the two act in concert but that auxin metabolism is itself regulated by the availability of free sugars. The regulation of the biosynthesis and degradation of the main auxin, indole-3-acetic acid (IAA), by sugars requires changes in the expression of multiple genes and metabolites linked to several IAA biosynthetic pathways. The induction also involves members of the recently described central regulator PHYTOCHROME-INTERACTING FACTOR transcription factor family. Linking these three known regulators of growth provides a model for the dynamic coordination of responses to a changing environment.
منابع مشابه
A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation
Critical responses to developmental or environmental stimuli are mediated by different transcription factors, including members of the ERF, bZIP, MYB, MYC, and WRKY families. Of these, MYB genes play roles in many developmental processes. The overexpression of one MYB gene, MYBH, significantly increased hypocotyl elongation in Arabidopsis thaliana plants grown in the light, and the expression o...
متن کاملHypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways
Many processes critical to plant growth and development are regulated by the hormone auxin. Auxin responses are initiated through activation of a transcriptional response mediated by the TIR1/AFB family of F-box protein auxin receptors as well as the AUX/IAA and ARF families of transcriptional regulators. However, there is little information on how auxin regulates a specific cellular response. ...
متن کاملArabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression
The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However,...
متن کاملCoordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation
Hypocotyl elongation is extensively controlled by hormone signaling networks. In particular, auxin metabolism and signaling play key roles in light-dependent hypocotyl growth. The nuclear matrix facilitates organization of DNA within the nucleus, and dynamic interactions between nuclear matrix and DNA are related to gene regulation. Conserved scaffold/matrix attachment regions (S/MARs) are anch...
متن کاملAn endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation.
The local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana). Sucrose likely interacts with an endogenous carbon-sensing p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2012